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Introduction

Online video is changing the way people interact and

collaborate on the Web.

◮ 69% of all Internet users consume videos online.

◮ 14% have posted videos 1.

1
The state of online video. Technical report, Pew Internet & American Life Project, 2010



Introduction

Online video consumption in Brazil:

◮ Among the Top 10 largest online video markets.

◮ 82% of users consume videos online.

◮ 43 million unique viewers.

Total Unique Viewers % Reach Web Population

Worldwide 1,279,264 83.8%

China 289,890 84.3%

US 188,130 84.9%

Japan 60,939 82.8%

Russia 55,591 90.6%

India 51,718 73.1%

Germany 47,617 82.9%

Brazil 42,998 82.2%

France 40,662 84.6%

UK 37,477 83.6%

Italy 23,857 83.0%

Top 10 Global Markets by Unique Video Viewers2.

2
http://comscore.com . February 6, 2013.

http://comscore.com


Introduction

Online video classification according to its providers:

◮ Mainstream Media (MSM).

◮ User-generated Content (UGC).



Introduction

We present an analysis of access patterns in Brazilian MSM

portals.

Motivation:

◮ The importance of online videos.

◮ The position of Brazil as one of the largest online video

markets.

◮ Little is known about video access patterns in MSM portals,

since detailed data is not generally available.



Experimental Methodology

Data was collected in association with Samba Tech 3

3
http://sambatech.com .

http://sambatech.com


Experimental Methodology

Dataset information:

◮ Session(user, time) = player events + video info.

◮ 38 Websites. Including 6 of the largest Brazilian portals.

Start date Jun 24th, 2012 (Sun)

End date Aug 18th, 2012 (Sat)

Unique sessions 110,626,789

Unique users 43,217,621

Unique videos 127,068

Video duration (mean) 433.5s

Video duration (s.d.) 782.9s

Salient statistics of our dataset.



Experimental Analysis

Research questions:

Q1. Which access patterns emerge from analyzing a static

snapshot of MSM portals aggregated over time?

→ Static Analysis

Q2. Which temporal patterns can be inferred by analyzing user

interactions at different points in time?

→ Temporal Analysis



Static Analysis

Video Categories
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Number of videos per category.

◮ 53.6% have not been assigned to any category.

◮ Distribution similar to UGC Websites. But “Music” and

“Comedy” are the two most present categories on YouTube.



Static Analysis

Video Categories
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Number of views per category.

◮ There is not an exact correspondence with videos per

category. “Politics” received less views than “Entertainment”.

◮ Considering views per video, “Music” and “People” stand out

from the others.



Static Analysis

Video Duration
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Mean video duration per category.

Error bars denote 95% confidence intervals.

◮ Video length depends heavily on the category.

◮ The majority of YouTube videos is relatively much shorter.



Static Analysis

Views
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◮ Long tail behaviour.

◮ Less than 10% of the users watched at least 10 videos.

◮ Much less than 1% watched at least 100 videos.



Static Analysis

Views
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◮ Long tail of modestly watched videos.

◮ But distribution does not follow Zipf’s law (behaviour also

reported for YouTube).



Temporal Analysis

Access Patterns

Number of views per day over 8 weeks.

◮ Cyclic pattern of accesses

◮ weekdays x weekends.



Temporal Analysis

Access Patterns
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Number of views per hour of the day over 7 days.

◮ Expected and well-defined pattern.

◮ Highest peak usually occurs between 7pm and 8pm.

◮ Lowest value occurs about 6am.



Temporal Analysis

Access Patterns
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Number of views per hour of the day and category over 7 days.

◮ Follows the common behaviour, but there are specific patterns

for each category.

◮ For example, for “Sports”, the number of views is much

higher on Monday and Thursday.



Temporal Analysis

Retention
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Video retention - total and per category (CCDF).

◮ Most users watch less than 10% of the video (low retention).

◮ Similar distributions between categories, differing slightly on

the percentage of sessions with at least 10% of retention.

“Sports” (20%) x “Entertainment” (30%).



Temporal Analysis

Life Span
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Video life span - total and per category (CDF).

◮ The evolution of views follows a logarithmic function.

◮ Categories differs on the convergence rate.

◮ 77% of the views from “Sports” occur on their first day. While

videos from “Science” achieve only 29% on their first day.



Conclusions

◮ We have presented an extensive analysis of video access

patterns in Brazilian MSM portals.

◮ Our investigation revealed interesting static and temporal

patterns that can be compared with results in UGC websites.

◮ the two most popular categories in YouTube are among the

least prevalent in MSM portals.

◮ YouTube videos are relatively much shorter than MSM ones.

◮ life span depends on category but, in general, it is very short.

◮ The access patterns can be used by MSM portals to improve

service quality and enhance users’ experience.

◮ Future work:

◮ investigate social aspects of MSM portals.

◮ synthetic workload generation.
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